int($chu[0][0]) ){ for($i=4;$i>0;$i--){ $saku[$i] = $saku[$i-1]; } $saku[0] = calc_saku($saku[0]-27.0); } #----------------------------------------------------------------------- # 閏月検索Flagセット # (節月で4ヶ月の間に朔が5回あると、閏月がある可能性がある。) # lap=0:平月 lap=1:閏月 #----------------------------------------------------------------------- if(int($saku[4]) <= int($chu[3][0]) ){ $lap=1; }else{ $lap=0; } #----------------------------------------------------------------------- # 朔日行列の作成 # m[i,0] ... 月名(1:正月 2:2月 3:3月 ....) # m[i,1] ... 閏フラグ(0:平月 1:閏月) # m[i,2] ... 朔日のjd #----------------------------------------------------------------------- $m[0][0]=int($chu[0][1]/30.0) + 2; if( $m[0][1] > 12 ){ $m[0][0]-=12; } $m[0][2]=int($saku[0]); $m[0][1]=0; for($i=1;$i<5;$i++){ if($lap == 1 && $i !=1 ){ if( int($chu[$i-1][0]) <= int($saku[$i-1]) || int($chu[$i-1][0]) >= int($saku[$i]) ){ $m[$i-1][0] = $m[$i-2][0]; $m[$i-1][1] = 1; $m[$i-1][2] = int($saku[$i-1]); $lap=0; } } $m[$i][0] = $m[$i-1][0]+1; if( $m[$i][0] > 12 ){ $m[$i][0]-=12; } $m[$i][2]=int($saku[$i]); $m[$i][1]=0; } #----------------------------------------------------------------------- # 朔日行列から旧暦を求める。 #----------------------------------------------------------------------- $state=0; for($i=0;$i<5;$i++){ if(int($tm0) < int($m[$i][2])){ $state=1; break; }elseif(int($tm0) == int($m[$i][2])){ $state=2; break; } } if($state==0||$state==1){ $i--; } $kyureki[1]=$m[$i][1]; $kyureki[2]=$m[$i][0]; $kyureki[3]=int($tm0)-int($m[$i][2])+1; #----------------------------------------------------------------------- # 旧暦年の計算 # (旧暦月が10以上でかつ新暦月より大きい場合には、 # まだ年を越していないはず...) #----------------------------------------------------------------------- $a = JD2YMDT($tm0); $kyureki[0] = $a[0]; if($kyureki[2] > 9 && $kyureki[2] > $a[1]){ $kyureki[0]--; } return array($kyureki[0],$kyureki[1],$kyureki[2],$kyureki[3]); } #========================================================================= # 中気の時刻を求める # # 呼び出し時にセットする変数 # tm ........ 計算対象となる時刻(ユリウス日) # chu ....... 戻り値を格納する配列のポインター # i ......... 戻り値を格納する配列の要素番号 # 戻り値 .... 中気の時刻、その時の黄経を配列で渡す # #========================================================================= function calc_chu($tm) { #----------------------------------------------------------------------- #時刻引数を分解する #----------------------------------------------------------------------- $tm1 = int( $tm ); $tm2 = $tm - $tm1; #----------------------------------------------------------------------- # JST ==> DT (補正時刻=0.0sec と仮定して計算) #----------------------------------------------------------------------- $tm2-=9.0/24.0; #----------------------------------------------------------------------- # 中気の黄経 λsun0 を求める #----------------------------------------------------------------------- $t=($tm2+0.5) / 36525.0; $t=$t + ($tm1-2451545.0) / 36525.0; $rm_sun = LONGITUDE_SUN( $t ); $rm_sun0 = 30.0*int($rm_sun/30.0); #----------------------------------------------------------------------- # 繰り返し計算によって中気の時刻を計算する # (誤差が±1.0 sec以内になったら打ち切る。) #----------------------------------------------------------------------- for( $delta_t2 = 1.0 ; abs( $delta_t1 + $delta_t2 ) > ( 1.0 / 86400.0 ) ; ){ #----------------------------------------------------------------------- # λsun を計算 #----------------------------------------------------------------------- $t =($tm2+0.5) / 36525.0; $t =$t + ($tm1-2451545.0) / 36525.0; $rm_sun=LONGITUDE_SUN( $t ); #----------------------------------------------------------------------- # 黄経差 Δλ=λsun −λsun0 #----------------------------------------------------------------------- $delta_rm = $rm_sun - $rm_sun0 ; #----------------------------------------------------------------------- # Δλの引き込み範囲(±180°)を逸脱した場合には、補正を行う #----------------------------------------------------------------------- if( $delta_rm > 180.0 ){ $delta_rm-=360.0; }elseif( $delta_rm < -180.0 ){ $delta_rm+=360.0; } #----------------------------------------------------------------------- # 時刻引数の補正値 Δt # delta_t = delta_rm * 365.2 / 360.0; #----------------------------------------------------------------------- $delta_t1 = int($delta_rm * 365.2 / 360.0); $delta_t2 = $delta_rm * 365.2 / 360.0; $delta_t2 -= $delta_t1; #----------------------------------------------------------------------- # 時刻引数の補正 # tm -= delta_t; #----------------------------------------------------------------------- $tm1 = $tm1 - $delta_t1; $tm2 = $tm2 - $delta_t2; if($tm2 < 0){ $tm2+=1.0;$tm1-=1.0; } } #----------------------------------------------------------------------- # 戻り値の作成 # chu[i,0]:時刻引数を合成するのと、DT ==> JST 変換を行い、戻り値とする # (補正時刻=0.0sec と仮定して計算) # chu[i,1]:黄経 #----------------------------------------------------------------------- $temp[0] = $tm2+9.0/24.0; $temp[0] += $tm1; $temp[1] = $rm_sun0; return array($temp[0],$temp[1]); } #========================================================================= # 直前の二分二至の時刻を求める # # 呼び出し時にセットする変数 # tm ........ 計算対象となる時刻(ユリウス日) # nibun ..... 戻り値を格納する配列のポインター # 戻り値 .... 二分二至の時刻、その時の黄経を配列で渡す # (戻り値の渡し方がちょっと気にくわないがまぁいいや。) #========================================================================= function before_nibun($tm) { #----------------------------------------------------------------------- #時刻引数を分解する #----------------------------------------------------------------------- $tm1 = int( $tm ); $tm2 = $tm - $tm1; #----------------------------------------------------------------------- # JST ==> DT (補正時刻=0.0sec と仮定して計算) #----------------------------------------------------------------------- $tm2-=9.0/24.0; #----------------------------------------------------------------------- # 直前の二分二至の黄経 λsun0 を求める #----------------------------------------------------------------------- $t=($tm2+0.5) / 36525.0; $t=$t + ($tm1-2451545.0) / 36525.0; $rm_sun=LONGITUDE_SUN( $t ); $rm_sun0=90*int($rm_sun/90.0); #----------------------------------------------------------------------- # 繰り返し計算によって直前の二分二至の時刻を計算する # (誤差が±1.0 sec以内になったら打ち切る。) #----------------------------------------------------------------------- for( $delta_t2 = 1.0 ; abs( $delta_t1+$delta_t2 ) > ( 1.0 / 86400.0 ) ; ){ #----------------------------------------------------------------------- # λsun を計算 #----------------------------------------------------------------------- $t=($tm2+0.5) / 36525.0; $t=$t + ($tm1-2451545.0) / 36525.0; $rm_sun=LONGITUDE_SUN( $t ); #----------------------------------------------------------------------- # 黄経差 Δλ=λsun −λsun0 #----------------------------------------------------------------------- $delta_rm = $rm_sun - $rm_sun0 ; #----------------------------------------------------------------------- # Δλの引き込み範囲(±180°)を逸脱した場合には、補正を行う #----------------------------------------------------------------------- if( $delta_rm > 180.0 ){ $delta_rm-=360.0; }elseif( $delta_rm < -180.0){ $delta_rm+=360.0; } #----------------------------------------------------------------------- # 時刻引数の補正値 Δt # delta_t = delta_rm * 365.2 / 360.0; #----------------------------------------------------------------------- $delta_t1 = int($delta_rm * 365.2 / 360.0); $delta_t2 = $delta_rm * 365.2 / 360.0; $delta_t2 -= $delta_t1; #----------------------------------------------------------------------- # 時刻引数の補正 # tm -= delta_t; #----------------------------------------------------------------------- $tm1 = $tm1 - $delta_t1; $tm2 = $tm2 - $delta_t2; if($tm2 < 0){ $tm2+=1.0;$tm1-=1.0; } } #----------------------------------------------------------------------- # 戻り値の作成 # nibun[0,0]:時刻引数を合成するのと、DT ==> JST 変換を行い、戻り値とする # (補正時刻=0.0sec と仮定して計算) # nibun[0,1]:黄経 #----------------------------------------------------------------------- $nibun[0] = $tm2+9.0/24.0; $nibun[0] += $tm1; $nibun[1] = $rm_sun0; return array($nibun[0],$nibun[1]); } #========================================================================= # 朔の計算 # 与えられた時刻の直近の朔の時刻(JST)を求める # # 呼び出し時にセットする変数 # tm ........ 計算対象となる時刻(ユリウス日) # 戻り値 .... 朔の時刻 # # ※ 引数、戻り値ともユリウス日で表し、時分秒は日の小数で表す。 # #========================================================================= function calc_saku($tm) { #----------------------------------------------------------------------- # ループカウンタのセット #----------------------------------------------------------------------- $lc=1; #----------------------------------------------------------------------- #時刻引数を分解する #----------------------------------------------------------------------- $tm1 = int( $tm ); $tm2 = $tm - $tm1; #----------------------------------------------------------------------- # JST ==> DT (補正時刻=0.0sec と仮定して計算) #----------------------------------------------------------------------- $tm2-=9.0/24.0; #----------------------------------------------------------------------- # 繰り返し計算によって朔の時刻を計算する # (誤差が±1.0 sec以内になったら打ち切る。) #----------------------------------------------------------------------- for( $delta_t2 = 1.0 ; abs( $delta_t1+$delta_t2 ) > ( 1.0 / 86400.0 ) ; $lc++){ #----------------------------------------------------------------------- # 太陽の黄経λsun ,月の黄経λmoon を計算 # t = (tm - 2451548.0 + 0.5)/36525.0; #----------------------------------------------------------------------- $t=($tm2+0.5) / 36525.0; $t=$t + ($tm1-2451545.0) / 36525.0; $rm_sun=LONGITUDE_SUN( $t ); $rm_moon=LONGITUDE_MOON( $t ); #----------------------------------------------------------------------- # 月と太陽の黄経差Δλ # Δλ=λmoon−λsun #----------------------------------------------------------------------- $delta_rm = $rm_moon - $rm_sun ; #----------------------------------------------------------------------- # ループの1回目(lc=1)で delta_rm < 0.0 の場合には引き込み範囲に # 入るように補正する #----------------------------------------------------------------------- if( $lc==1 && $delta_rm < 0.0 ){ $delta_rm = NORMALIZATION_ANGLE( $delta_rm ); } #----------------------------------------------------------------------- # 春分の近くで朔がある場合(0 ≦λsun≦ 20)で、月の黄経λmoon≧300 の # 場合には、Δλ= 360.0 − Δλ と計算して補正する #----------------------------------------------------------------------- elseif( $rm_sun >= 0 && $rm_sun <= 20 && $rm_moon >= 300 ){ $delta_rm = NORMALIZATION_ANGLE( $delta_rm ); $delta_rm = 360.0 - $delta_rm; } #----------------------------------------------------------------------- # Δλの引き込み範囲(±40°)を逸脱した場合には、補正を行う #----------------------------------------------------------------------- elseif( abs( $delta_rm ) > 40.0 ) { $delta_rm = NORMALIZATION_ANGLE( $delta_rm ); } #----------------------------------------------------------------------- # 時刻引数の補正値 Δt # delta_t = delta_rm * 29.530589 / 360.0; #----------------------------------------------------------------------- $delta_t1 = int($delta_rm * 29.530589 / 360.0); $delta_t2 = $delta_rm * 29.530589 / 360.0; $delta_t2 -= $delta_t1; #----------------------------------------------------------------------- # 時刻引数の補正 # tm -= delta_t; #----------------------------------------------------------------------- $tm1 = $tm1 - $delta_t1; $tm2 = $tm2 - $delta_t2; if($tm2 < 0.0){ $tm2+=1.0;$tm1-=1.0; } #----------------------------------------------------------------------- # ループ回数が15回になったら、初期値 tm を tm-26 とする。 #----------------------------------------------------------------------- if($lc == 15 && abs( $delta_t1+$delta_t2 ) > ( 1.0 / 86400.0 ) ){ $tm1 = int( $tm-26 ); $tm2 = 0; } #----------------------------------------------------------------------- # 初期値を補正したにも関わらず、振動を続ける場合には初期値を答えとして # 返して強制的にループを抜け出して異常終了させる。 #----------------------------------------------------------------------- elseif( $lc > 30 && abs( $delta_t1+$delta_t2 ) > ( 1.0 / 86400.0 ) ){ $tm1=$tm;$tm2=0; break; } } #----------------------------------------------------------------------- # 時刻引数を合成するのと、DT ==> JST 変換を行い、戻り値とする # (補正時刻=0.0sec と仮定して計算) #----------------------------------------------------------------------- return($tm2+$tm1+9.0/24.0); } #========================================================================= # 角度の正規化を行う。すなわち引数の範囲を 0≦θ<360 にする。 #========================================================================= function NORMALIZATION_ANGLE($angle) { if( $angle < 0.0 ){ $angle1 = -$angle; $angle2 = int( $angle1 / 360.0 ); $angle1 -= 360.0 * $angle2; $angle1 = 360.0 - $angle1; }else{ $angle1 = int( $angle / 360.0 ); $angle1 = $angle - 360.0 * $angle1; } return($angle1); } #========================================================================= # 太陽の黄経 λsun を計算する #========================================================================= function LONGITUDE_SUN($t) { #----------------------------------------------------------------------- # 円周率の定義と(角度の)度からラジアンに変換する係数の定義 #----------------------------------------------------------------------- $PI=3.141592653589793238462; $k=$PI/180.0; #----------------------------------------------------------------------- # 摂動項の計算 #----------------------------------------------------------------------- $ang = NORMALIZATION_ANGLE( 31557.0 * $t + 161.0 ); $th = .0004 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 29930.0 * $t + 48.0 ); $th = $th + .0004 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 2281.0 * $t + 221.0 ); $th = $th + .0005 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 155.0 * $t + 118.0 ); $th = $th + .0005 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 33718.0 * $t + 316.0 ); $th = $th + .0006 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 9038.0 * $t + 64.0 ); $th = $th + .0007 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 3035.0 * $t + 110.0 ); $th = $th + .0007 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 65929.0 * $t + 45.0 ); $th = $th + .0007 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 22519.0 * $t + 352.0 ); $th = $th + .0013 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 45038.0 * $t + 254.0 ); $th = $th + .0015 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 445267.0 * $t + 208.0 ); $th = $th + .0018 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 19.0 * $t + 159.0 ); $th = $th + .0018 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 32964.0 * $t + 158.0 ); $th = $th + .0020 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 71998.1 * $t + 265.1 ); $th = $th + .0200 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 35999.05 * $t + 267.52 ); $th = $th - 0.0048 * $t * cos( $k*$ang ) ; $th = $th + 1.9147 * cos( $k*$ang ) ; #----------------------------------------------------------------------- # 比例項の計算 #----------------------------------------------------------------------- $ang = NORMALIZATION_ANGLE( 36000.7695 * $t ); $ang = NORMALIZATION_ANGLE( $ang + 280.4659 ); $th = NORMALIZATION_ANGLE( $th + $ang ); return($th); } #========================================================================= # 月の黄経 λmoon を計算する #========================================================================= function LONGITUDE_MOON($t) { #----------------------------------------------------------------------- # 円周率の定義と(角度の)度からラジアンに変換する係数の定義 #----------------------------------------------------------------------- $PI=3.141592653589793238462; $k=$PI/180.0; #----------------------------------------------------------------------- # 摂動項の計算 #----------------------------------------------------------------------- $ang = NORMALIZATION_ANGLE( 2322131.0 * $t + 191.0 ); $th = .0003 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 4067.0 * $t + 70.0 ); $th = $th + .0003 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 549197.0 * $t + 220.0 ); $th = $th + .0003 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1808933.0 * $t + 58.0 ); $th = $th + .0003 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 349472.0 * $t + 337.0 ); $th = $th + .0003 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 381404.0 * $t + 354.0 ); $th = $th + .0003 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 958465.0 * $t + 340.0 ); $th = $th + .0003 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 12006.0 * $t + 187.0 ); $th = $th + .0004 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 39871.0 * $t + 223.0 ); $th = $th + .0004 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 509131.0 * $t + 242.0 ); $th = $th + .0005 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1745069.0 * $t + 24.0 ); $th = $th + .0005 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1908795.0 * $t + 90.0 ); $th = $th + .0005 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 2258267.0 * $t + 156.0 ); $th = $th + .0006 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 111869.0 * $t + 38.0 ); $th = $th + .0006 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 27864.0 * $t + 127.0 ); $th = $th + .0007 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 485333.0 * $t + 186.0 ); $th = $th + .0007 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 405201.0 * $t + 50.0 ); $th = $th + .0007 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 790672.0 * $t + 114.0 ); $th = $th + .0007 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1403732.0 * $t + 98.0 ); $th = $th + .0008 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 858602.0 * $t + 129.0 ); $th = $th + .0009 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1920802.0 * $t + 186.0 ); $th = $th + .0011 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1267871.0 * $t + 249.0 ); $th = $th + .0012 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1856938.0 * $t + 152.0 ); $th = $th + .0016 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 401329.0 * $t + 274.0 ); $th = $th + .0018 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 341337.0 * $t + 16.0 ); $th = $th + .0021 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 71998.0 * $t + 85.0 ); $th = $th + .0021 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 990397.0 * $t + 357.0 ); $th = $th + .0021 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 818536.0 * $t + 151.0 ); $th = $th + .0022 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 922466.0 * $t + 163.0 ); $th = $th + .0023 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 99863.0 * $t + 122.0 ); $th = $th + .0024 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1379739.0 * $t + 17.0 ); $th = $th + .0026 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 918399.0 * $t + 182.0 ); $th = $th + .0027 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1934.0 * $t + 145.0 ); $th = $th + .0028 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 541062.0 * $t + 259.0 ); $th = $th + .0037 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1781068.0 * $t + 21.0 ); $th = $th + .0038 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 133.0 * $t + 29.0 ); $th = $th + .0040 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1844932.0 * $t + 56.0 ); $th = $th + .0040 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1331734.0 * $t + 283.0 ); $th = $th + .0040 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 481266.0 * $t + 205.0 ); $th = $th + .0050 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 31932.0 * $t + 107.0 ); $th = $th + .0052 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 926533.0 * $t + 323.0 ); $th = $th + .0068 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 449334.0 * $t + 188.0 ); $th = $th + .0079 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 826671.0 * $t + 111.0 ); $th = $th + .0085 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1431597.0 * $t + 315.0 ); $th = $th + .0100 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1303870.0 * $t + 246.0 ); $th = $th + .0107 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 489205.0 * $t + 142.0 ); $th = $th + .0110 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1443603.0 * $t + 52.0 ); $th = $th + .0125 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 75870.0 * $t + 41.0 ); $th = $th + .0154 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 513197.9 * $t + 222.5 ); $th = $th + .0304 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 445267.1 * $t + 27.9 ); $th = $th + .0347 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 441199.8 * $t + 47.4 ); $th = $th + .0409 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 854535.2 * $t + 148.2 ); $th = $th + .0458 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 1367733.1 * $t + 280.7 ); $th = $th + .0533 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 377336.3 * $t + 13.2 ); $th = $th + .0571 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 63863.5 * $t + 124.2 ); $th = $th + .0588 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 966404.0 * $t + 276.5 ); $th = $th + .1144 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 35999.05 * $t + 87.53 ); $th = $th + .1851 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 954397.74 * $t + 179.93 ); $th = $th + .2136 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 890534.22 * $t + 145.7 ); $th = $th + .6583 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 413335.35 * $t + 10.74 ); $th = $th + 1.2740 * cos( $k*$ang ); $ang = NORMALIZATION_ANGLE( 477198.868 * $t + 44.963 ); $th = $th + 6.2888 * cos( $k*$ang ); #----------------------------------------------------------------------- # 比例項の計算 #----------------------------------------------------------------------- $ang = NORMALIZATION_ANGLE( 481267.8809 * $t ); $ang = NORMALIZATION_ANGLE( $ang + 218.3162 ); $th = NORMALIZATION_ANGLE( $th + $ang ); return($th); } #========================================================================= # 年月日、時分秒(世界時)からユリウス日(JD)を計算する # # ※ この関数では、グレゴリオ暦法による年月日から求めるものである。 # (ユリウス暦法による年月日から求める場合には使用できない。) #========================================================================= function YMDT2JD($year,$month,$day,$hour,$min,$sec){ if( $month < 3.0 ){ $year -= 1.0; $month += 12.0; } $jd = int( 365.25 * $year ); $jd += int( $year / 400.0 ); $jd -= int( $year / 100.0 ); $jd += int( 30.59 * ( $month-2.0 ) ); $jd += 1721088; $jd += $day; $t = $sec / 3600.0; $t += $min /60.0; $t += $hour; $t = $t / 24.0; $jd += $t; return( $jd ); } #========================================================================= # ユリウス日(JD)から年月日、時分秒(世界時)を計算する # # 戻り値の配列TIME[]の内訳 # TIME[0] ... 年 TIME[1] ... 月 TIME[2] ... 日 # TIME[3] ... 時 TIME[4] ... 分 TIME[5] ... 秒 # # ※ この関数で求めた年月日は、グレゴリオ暦法によって表されている。 # #========================================================================= function JD2YMDT($JD) { $x0 = int( $JD+68570.0); $x1 = int( $x0/36524.25 ); $x2 = $x0 - int( 36524.25*$x1 + 0.75 ); $x3 = int( ( $x2+1 )/365.2425 ); $x4 = $x2 - int( 365.25*$x3 )+31.0; $x5 = int( int($x4) / 30.59 ); $x6 = int( int($x5) / 11.0 ); $TIME[2] = $x4 - int( 30.59*$x5 ); $TIME[1] = $x5 - 12*$x6 + 2; $TIME[0] = 100*( $x1-49 ) + $x3 + $x6; # 2月30日の補正 if($TIME[1]==2 && $TIME[2] > 28){ if($TIME[0] % 100 == 0 && $TIME[0] % 400 == 0){ $TIME[2]=29; }elseif($TIME[0] % 4 ==0){ $TIME[2]=29; }else{ $TIME[2]=28; } } $tm=86400.0*( $JD - int( $JD ) ); $TIME[3] = int( $tm/3600.0 ); $TIME[4] = int( ($tm - 3600.0*$TIME[3])/60.0 ); $TIME[5] = int( $tm - 3600.0*$TIME[3] - 60*$TIME[4] ); return array($TIME[0],$TIME[1],$TIME[2],$TIME[3],$TIME[4],$TIME[5]); } #========================================================================= # 今日が24節気かどうか調べる # # 引数  .... 計算対象となる年月日 $year $mon $day # # 戻り値 .... 24節気の名称 # #========================================================================= function check_24sekki($year,$mon,$day) { #----------------------------------------------------------------------- # 24節気の定義 #----------------------------------------------------------------------- $sekki24 = array("春分","清明","穀雨","立夏","小満","芒種","夏至","小暑","大暑","立秋","処暑","白露", "秋分","寒露","霜降","立冬","小雪","大雪","冬至","小寒","大寒","立春","雨水","啓蟄"); $tm = YMDT2JD($year,$mon,$day,0,0,0); #----------------------------------------------------------------------- #時刻引数を分解する #----------------------------------------------------------------------- $tm1 = int( $tm ); $tm2 = $tm - $tm1; $tm2-=9.0/24.0; $t=($tm2+0.5) / 36525.0; $t=$t + ($tm1-2451545.0) / 36525.0; #今日の太陽の黄経 $rm_sun_today = LONGITUDE_SUN( $t ); $tm++; $tm1 = int($tm); $tm2 = $tm - $tm1; $tm2-=9.0/24.0; $t=($tm2+0.5) / 36525.0; $t=$t + ($tm1-2451545.0) / 36525.0; #明日の太陽の黄経 $rm_sun_tommorow = LONGITUDE_SUN($t); # $rm_sun_today0 = 15.0 * int($rm_sun_today / 15.0); $rm_sun_tommorow0 = 15.0 * int($rm_sun_tommorow / 15.0); if($rm_sun_today0 != $rm_sun_tommorow0){ return($sekki24[$rm_sun_tommorow0 / 15]); }else{ return(''); } } function int($in) { if($in>0){return floor($in);} else{return ceil($in);} } ?> コ」キ、ホツ邁ツ。ハ2017ヌッ11キ。ヒ、・チ・ァ・テ・ッ。ェツ邁ツ・ォ・・・タ。シ。ヲキホ・ォ・・・タ。シ - ゚ナヘ、ネソ蟆。。

ヒワニ2017ヌッ 11キ 23ニ、マ